SUNConferences, RAPDASA 2014

Font Size: 
A ROUND ROBIN STUDY FOR LASER BEAM MELTING IN METAL POWDER BED: COMPARING MECHANICAL CHARACTERISTICS WITH SYSTEM TECHNOLOGY VARIATION
Bhrigu Ahuja, Michael Schmidt

Last modified: 2014-11-02

Abstract


With recent developments in additive manufacturing, there has been a keen interest in understanding its possibilities and limitations specifically with respect to the conventional engineering and manufacturing standards. Although coined as a prototyping technology at the time of its inception, Additive manufacturing with its characteristic layer by layer fabrication methodology is now the focus of end product manufacturing for many niche applications. One of the key additive manufacturing processes leading this evolution is the process of Laser Beam Melting in metal powder bed. With its ability to fabricate fully dense 3-dimensional structures by selectively melting micro-sized metal powder, Laser Beam Melting is being considered by many as a significant complimentary technology to the conventional forming and subtractive manufacturing processes. In order to completely understand the abilities and limitations of the Laser Beam Melting process, a detailed analysis of the system technology, process and user induced variations in relation to the characteristics of the resultant part needs to be performed. With the above motivations in mind, an initiative at the Collaborative Working Group, Lasers in production at the International Academy of Production Engineering (CIRP) was undertaken to conduct a comparative study in the form of a Round Robin test by analyzing the mechanical characteristics of samples fabricated by various users of the Laser Beam Melting technology from volunteers within the members of the academy. The presented paper illustrates the design and methodology of the round robin test in addition to some preliminary results and makes an attempt to connect these results with the various phenomena occurring in the Laser Beam Melting process. Authors of the paper gratefully acknowledge the contributions from the various members of the Collaborative Working Group, Lasers in production at the International Academy of Production Engineering (CIRP) who volunteered for providing the samples for the conducted round robin test.




Add comment